Consider the following problem : Your are given an array $$$a_1, a_2, ..., a_n$$$ and q queries of form $$$l r$$$. For each query you have to find the MEX of the array $$$a_l, a_{l+1}, ..., a_r$$$. The queries are offline.
One of the approach to the problem is discussed here.
First let's consider a special case of the queries where $$$r = n$$$. In this case we want to find the smallest integer that does not occur int the subarray $$$a_l, ..., a_r$$$. Let $$$b_x = $$$ \bigl{
#include<bits/stdc++.h>
using namespace std;
#define ll long long
struct SegmentTree{
int n;
vector<int> tree;
SegmentTree(int sz){
n = 1;
while(n < sz){
n <<= 1;
}
tree.assign(2 * n, 0);
}
void set(int ind, int val){
ind += n;
tree[ind] = val;
ind >>= 1;
while(ind > 0){
tree[ind] = min(tree[2 * ind], tree[2 * ind + 1]);
ind >>= 1;
}
}
int get(int x, int node = 1){
// return the first index i, such that s[i] < x
int ans = 1;
while(ans < n){
ans <<= 1;
if(tree[ans] >= x){
++ans;
}
}
return (ans - n);
}
};
int main(){
int n;
cin >> n;
vector<int> a(n + 1);
for(int i = 1; i <= n; ++i){
cin >> a[i];
}
int q;
cin >> q;
vector<vector<pair<int, int>>> queries(n + 1);
for(int i = 0; i < q; ++i){
int l, r;
cin >> l >> r;
queries[r].push_back({l, i});
}
vector<int> res(q);
SegmentTree s(n + 1);
for(int i = 1; i <= n; ++i){
// set the last occurence of a[i] to i
s.set(a[i], i);
for(auto [l, ind] : queries[i]){
// find the smallest x, such that last occurence of x < l
res[ind] = s.get(l);
}
}
for(int elem : res){
cout << elem << '\n';
}
cout << '\n';
return 0;
}