Hello everyone,
I did like to give a brief overview of Fermat's theorem and its proof. There are various methods to prove Fermat's Little theorem, but I found the combinatorial approach to be the most straightforward and easy to understand. I'd like to discuss Fermat's theorem and its proof using combinatorics.
Fermat's Little Theorem:
- States that given 2 integers $$$a$$$ , $$$p$$$ where $$$a > 1$$$ and $$$p$$$ is a prime, It follows that $$$a^{p-1} \equiv 1 mod p$$$
References:
Wikepedia