Hello everyone,
I did like to give a brief overview of Fermat's theorem and its proof. There are various methods to prove Fermat's Little theorem, but I found the combinatorial approach to be the most straightforward and easy to understand. I'd like to discuss Fermat's theorem and its proof using combinatorics.
Fermat's Little Theorem
It states that given 2 integers $$$a$$$ , $$$p$$$ where $$$a > 1$$$ and $$$p$$$ is a prime, It follows that $$$a^{p-1} \equiv 1 \pmod{p}$$$
Example:
Say a = 2 , p = 5.
$$$a^{p-1} $$$
$$$ = 2^{5-1}$$$
$$$ = 2^4 = 16$$$
$$$ \equiv 1 \pmod{5}$$$
Proof (Combinatorics Approach)
The concept behind this proof is to approach it through a combinatorial problem and discover its solution, which indirectly verifies the theorem. Let's explore this straightforward combinatorial problem.
Problem
Consider a Necklace chain consisting of beads. There are $$$p$$$ beads in this chain. You are allowed to color each bead with $$$a$$$ possible colors available. The colors are available in infinite amounts, there is no other restriction on coloring. Find the number of ways to color these beads.
It can be easily shown that there are $$$a^p$$$ ways to color the beads to get different necklaces. (considering cyclic rotations as distinct). Every bead has $$$a$$$ options to be colored.
Consider a small variation to this problem, Among all possible $$$a^p$$$ permutations, Let's try to group them based on similar cyclic rotations. Two permutations are said to be equivalent if any of them can be generated from the cyclic rotation of the other.
For example, consider $$$a = 2, p = 3$$$. Let X and Y be the 2 possible colors available.
- Group 1: XXX - Group 2: YYY - Group 3: XXY, XYX, YXX - Group 4: XYY, YYX, YXY
References:
Wikepedia