Solution of 1029B. Creating the Contest

Правка en1, от Theory_of_Everything, 2018-08-25 19:20:05

This is the second problem of Div.3. But I think it is not easy.

Problem:1029B - Составление контеста

Simple Meaning of Problem:

There is a sequence a and you should choose the longest sequence b {ai1, ai2, ..., aip} (p is the length of b) such that:each j∈[1, k) aij + 1 ≤ aij·2 should hold.

print the maximum number of p (the length of b)

First, you can enumerate which ones to choose. You will get a algorithm with O(2n). And you will get a Time Limit Exceed.(I didn't write it, because it is valueless.)

Then, dp is another useful algorithm. So we can try to use dp.

f[i] means that if you choose the number ai, you can get the maximum p (only of 1 to i).

It is very easy to get the state transition equation:

f[i] = max{f[j]} + 1, j satisfy that ai ≤ aj·2 and j ≤ i.

And the answer is max{f[i]} (i is 1 to n).

code:42093398

#pragma comment (linker,"/STACK:1024000000") 
#pragma GCC optimize(2)
#pragma GCC target(arch=corie7-acx)
#include<bits/stdc++.h>
using namespace std;
int n,a[200001],f[200001];
deque <int> q;
int t,ans;
int main()
{
	scanf("%d",&n);
	for (int i=1;i<=n;i++)
	scanf("%d",&a[i]);
	f[1]=1;
	for (int i=2;i<=n;i++)
	{
		for (int j=1;j<=i-1;j++)
		if (a[j]*2>=a[i]) f[i]=max(f[i],f[j]);
		f[i]++;
	}
	for (int i=1;i<=n;i++)
	ans=max(ans,f[i]);
	printf("%d",ans);
	return 0;
}

And this code does better:42095786(In fact, it also Time Limit Exceed on Test 4)

#pragma comment (linker,"/STACK:1024000000") 
#pragma GCC optimize(2)
#pragma GCC target(arch=corie7-acx)
#include<bits/stdc++.h>
using namespace std;
int n,a[200001],f[200001];
deque <int> q;
int t,ans;
int main()
{
	scanf("%d",&n);
	for (int i=1;i<=n;i++)
	scanf("%d",&a[i]);
	f[1]=1;
	for (int i=2;i<=n;i++)
	{
		for (int j=i-1;j>=1;j--)
		if (a[j]*2>=a[i]) f[i]=max(f[i],f[j]);
			else break;
		f[i]++;
	}
	for (int i=1;i<=n;i++)
	ans=max(ans,f[i]);
	printf("%d",ans);
	return 0;
}

But, unfortunately, these two are both Time Limit Exceed. (Actually, it is inevitable.)

Because when an ≤ a1·2, the time complexity of the code will come to O(n2) (break is useless).

Теги 1029b solution, #dp, priority queue

История

 
 
 
 
Правки
 
 
  Rev. Язык Кто Когда Δ Комментарий
en6 Английский Theory_of_Everything 2018-08-27 10:21:19 38
en5 Английский Theory_of_Everything 2018-08-27 10:18:56 237
en4 Английский Theory_of_Everything 2018-08-27 09:51:44 2
en3 Английский Theory_of_Everything 2018-08-27 09:41:22 1915 (published)
en2 Английский Theory_of_Everything 2018-08-27 09:12:22 440 Tiny change: '$O(n^2)$ (breakbreakbreak is useles' -> '$O(n^2)$ (`break` is useles'
en1 Английский Theory_of_Everything 2018-08-25 19:20:05 2329 Initial revision (saved to drafts)